NOTES

Preparation of Iodobenzene-d₅ and Diphenylacetylene-d₅ *

Received November 25, 1969.

Easy access to deuterated or tritiated iodobenzene is important for the synthesis of a wide variety of aromatic compounds containing these isotopes. Previous work has shown the tritiated iodobenzene can be obtained *via* diazotization of aniline ⁽¹⁾ and iodobenzene-d₅ from decomposition of the Grignard reagent prepared from bromobenzene-d₅ ^(2, 3). The former example uses relatively expensive aniline-d₅ (or tritiated aniline) as a starting material and the latter reaction yields only 94.5 % isotopically pure C₆D₅I.

In the present study iodobenzene- d_5 was prepared from readily available benzene- d_6 . Benzene- d_6 was monoiodinated by the method of Wirth and co-workers ⁽⁴⁾ in which treatment with iodic acid, iodine, acetic acid- d_4 deuterium oxide and sulfuric acid- d_2 gives iodobenzene- d_5 in 60-80 % yield. Mass spectrometry indicates a purity of >98.5 % C₆D₅I. The above procedure could also be used to prepare tritiated iodobenzene by using suitably enriched tritiated benzene.

The iodobenzene- d_5 was readily converted into a series of diphenyl acetylenes as shown in equation 1⁽⁵⁾.

The reaction was carried out at 100° C in pyridine and the products isolated by preparative thin-layer chromatography. In all cases the isotopic purity of the products was >98.5% $C_6D_5C \equiv C \cdot C_6H_4X$ as shown by mass spectrometry.

EXPERIMENTAL.

Mass spectra were measured with a Consolidated Electrodynamics Corporation 21-110B high resolution instrument using electrical detection. Samples were introduced by a direct introduction technique using a low temperature probe at -30° to $+10^{\circ}$ C⁽⁶⁾.

^{*} Issued as NRCC No. 11181.

Preparation of Iodobenzene-d₅.

Benzene-d₆ (1.25 g), iodine (1.1 g), iodic acid (0.45 g), acetic acid-d₄ (3.0 ml), sulfuric acid-d₂ (.18 ml) and deuterium oxide (0.6 ml) were stirred at 80° C for 4 hours. The mixture was cooled, diluted with water (10 ml) and extracted with pentane (20 ml). The pentane extract was washed with dilute aqueous bisulfite solution (2 \times 20 ml), water (2 \times 20 ml), dried, evaporated and the iodobenzene-d₅ recovered in 60-80 % yield by chromatography on silica gel or by microdistillation. When non-deuterated acetic acid, sulfuric acid and water was used C₆D₅I of 97-98 % isotopic purity was obtained.

Preparation of Diphenyl Acetylenes.

lodobenzene-d₅ (200 mg) and the cuprous derivative of 4-chlorophenylacetylene (100 mg) in pyridine (10 ml) were stirred for 18 hours at 100° C under a stream of dry nitrogen. The reaction mixture was then poured into water and the product isolated with ether and purified by thin-layer chromatography (50 % yield). The series of diphenylacetylenes (X = H, F, Br, Me) were all prepared as described above in 40-70 % yield. In most cases higher yields were obtained with extended reaction times of 24-48 hours.

S. SAFE

Atlantic Regional Laboratory, National Research Council of Canada, Halifax, Nova Scotia.

REFERENCES

- 1. JONES, E. R. H., SAFE, S. and THALLER, V. J. Chem. Soc. (C): 1038 (1967).
- 2. NANNEY, T. R., LIPPINCOTT, E. R. and HAMER J. C. Spectrochimica Acta, 22: 737 (1966).
- 3. DATTA, R. L. and MITTER, H. K. J. Am. Chem. Soc., 41 : 287 (1919).
- 4. WIRTH, H. O., KONIGSTEIN, O. and KERN, W. Ann., 634: 84 (1960).
- 5. STEPHENS, R. D. and CASTRO, C. E. J. Org. Chem., 28: 3313 (1963).
- 6. JAMIESON, W. D. and MASON, F. Manuscript in preparation.